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The following nonclassical problem arises in the course of determining the str- 

ess-deformation state of finite elastic bodies supported by thin- walled elastic 
elements (rods, plates and shells) (*) It is required to expand a given boundary 
function which undergoes a finite jump on the line of end section of the thin- 

walled element, into a series in terms of eigenfunctions. The unusual charac- 

ter of this problem is illustrated e. g. by the case in which the boundary func- 

tion is zero everywhere except at the line of discontinuity, 

Two problems of this type are solved in the present paper in closed form. Tor- 
sion of finite elastic cylinders welded end-on to circular plates of constant thi- 
ckness, or welded along the lateral surfaces to cylindrical shells of constant thi- 

ckness, is studied. Arbitrary fundamental conditions at the lateral boundary su- 

rface of the cylinder in the first problem and at the cylinder ends in the second 

problem, are satisfied exactly using the orthogonality relations derived in the 
paper, Similar orthogonality relations in the presence of a load were used earl- 

ier [l] in investigating oscillations of mechanical systems with concentrated ma- 
sses. The problems of convergence of the solutions obtained and their behavior 
at the comer points are studied here for the first time. Numerical results obtain- 

ed are presented. 

l. Let a circular plate of constant thickness h, be welded to the end z = 1 
of a finite elastic cylinder O\cz<f, O,<r<R. Theotherendisassumed, 

for definiteness, to be rigidly clamped (Fig. la). Arbitrary axisymmetric tangential 
forces f (z) are applied to the lateral surface, and the outer surface of the plate is lo- 

ad-free within the zone of contact. It is, however, acted upon by a torsional moment 

2w along the circumference z = 1, r k R 
Let us write the boundary conditions for the finite cylinder 

v=O (z=O, O<r<R) (1.1) 

*) Glagovskii, V.B. and Nuller, V.M. , Analogs of the Fourier and Schiff orthogonali- 

ty relations on the problems for supported elastic regions. Izv. AS SSSR MTT, Semin- 
ars of the Leningrad Polytechnic Inst., I$ 4, 1973. 
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Here G and Go are the shear moduli of the materials of the plate and the cylinder, 
respectively. We shall seek the solution of the problem (1, l)-( 1.4) in the form of a se- 
ries following the system of homog~e~s solutions of the problem (1. l), (1.2). 

U= g vk, VR = G-‘AkPkIl @kr) sinpkz (k = 1, 2, . . .) 
(1.5) 

K=l 
k %z = Al, pk21, (p,,?‘) COS pkz, T,,’ = AkPk212 ($I$) Sin pkz 

Here A, are arbitrary coefficients, 1, is the Bessel function of the first kind and 
n-order in its imaginary argument, and Pk are the roots of the characteristic equa- 

tion 

A (p) G $ p sin p - cos p = 0 (f3 “- Go W;-1) 
(1.6) 

The roots of the above equation are all simple and real, and their asymptotics is given 
by the formula 

Pk = nk + 0 (k-1) (1.7) 

The homogeneous solutions (1.5) satisfy the following orthogona~~ relation (6,, 
is the Kronecker delta): 

1 (1.3) 

s 
Sin pkz sin pnz dz + p sin pk sin Pn = hyk 

0 

yk = ?2 (i + p sin2 pk) 

a) b) Fig. 1 d) 

The above relations together with the boundary conditions (1.3), (1.4) yield the coeffi- 
cients Ah in the following manner. In accordance with (1.3), (1.5) we formally write 

co 

f (2) = 2 a, sin pnz, a, = 4~~~1~ (pnR) 
(1.9) 

n=l 
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Multiply~g both sides of the first equation by pkzI and integrating with respect 
to z from zero to one and using (1.Q we obtain 

; (1.10) 
ati = yk-l 

s 
0 

f (2) sin pkz dz + $ykel sin pk ntI a, sin pn 

Let us clarify the meaning of the second term in the ~ght-hand side of (1.10). From 

(1.4) and (I. 5) we have 

Therefore we can write (1.10) in the form 

a/c = Yk -l! f(z) sin p,z dz -+ 
M sin pk 

: 
0 

2n~Rzy 
k 

(1. II) 

This means that the problem (1. I)-(1.4) has been solved in closed form. In particular, 
if the lateral surface of the cylinder is stress-free, then 

(1.12) 

and the contact stresses between the cylinder and the plate can be found from (1.5),( 1. 

6) and (1.12) using the formula 

(1.13) 

ca 

‘1 (P,d 
pk. f1 -t ‘k) ‘2 (PkN) 

The type of behavior of the contact stresses with r + R can be easily established 

using the asymptotic formulas for the Bessel functions [Z] and the formula (1.7). Accord- 
ing to (1.13) we have 

(1.14) 

p -+ R) 

We note that the logarithmic singularity is unstable. If the angle a is acute, the si- 

ngularity vanishes; if it is obtuse, it becomes a power singularity. This follows from the 
analysis of the solution of the functional difference equation [3] defining the antiplane 
deformation of a wedge with an elastic covering. 

2. Let a finite, hollow elastic cylinder in < z < & Br < r < B be 

welded by its cylindrical surfaces r = Kj to shells of constant thickness 

hj (j = 2, 2). Axisymmetric tangential stresses g, (r) are given at the ends of the 

cylinder z L- 1, (s = 1, 2) and the torsional moments Mj,. at the shell ends 
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(Fig. Ib), The boundary conditions of this problem have the form 

J$$ .+ (-.. ~)j-L++..- zw = 0 (I” = Rjt i = ij 2) (2.1) 

Oj _j$ 

where $&j is the shear ~~ulus of the ji- th shell, G is the shear rn~u~us of the 
cylinder and the following condition of equilibrium holds: 

(2.4) 

We‘ write the solution in the form of a serfes 

#J P; &G%; zvro -I dor 
3, ($2, 7) = p&l rv, (p&) J, (Pd - Jl w-4) y?s Wf - 

fY, (pR,) J, cpr) - Ja wu y* WY 

Here Jm and ?:, are m-th order Bessel functions of the first and second kind, resp- 
ectively, vk, Tr2, %2 is the system of homogeneous solutions of the problem. 
(%I), pf 3 GajhjG-” (‘ k 1,Z) and the numbers Pk satisfy the ~har~ct~~s~c 
equation 

It can be shown that atE ~sots of the above equation are real and simple. When 
@j> 0 {i = 1, 3 are fixed, their ~~pt~i~ has the form 

Pk = TcJtk (I?, - I?$” + 0 (I@) 

According to the formulas {S} and (II) of Sect. 5,11 and (12) of Sect, 3.63 of [2), the 
homogeneous sol&ions (Z 5) satisfy the fo~~o~g or~ogun~~~~ relation: 

(28 61 
Rz 
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Substituting the series (2.5) into the condition (2.2) and utilizing the relation (2. F) 
with the conditions (2.3), we obtain two equations determining the coefficients 43, ,:;rd 

A-r @ f= 1,2, . ..) 

Condition of equilibrium (2.4) together with the formula (1) of Sect. 5.1 of [2] yields 

If Mis # 0 then %Q (2, Rj) z 0 (In I 2 - 4 1) as z -+ L if 
Mj, = 0, then %rq (z, Rj) = O (1). We solve in the same manner other pro- 
blems of torsion of thin-walled pipes connected by means of cylindrical sleeves (see, 

e.g. Fig. lc and Id). The proposed method can also be used to solve problems of sim- 
ultaneous twisting of shells and finite elastic bodies bounded by conical, spherical and 

ellipsoidal surfaces, 
3, We use the first problem to discuss the question of justifying the results ob- 

tained. This can be reduced to the lamination of the series (1.9), the convergence 

of which implies at once the convergence of the series (I. 5) for u when r = K; 

Its convergence at r < X is evident. 
For the time being we shall assume that the coefficients of the series (1.9) are giv- 

en by the formula (1.11) with M = 0 and bk are the coefficients of the Fourier 

sine series for the function f (2) 

1 1 

c&k = yk-l v, f(t)sinpktdt, f(t) sin nkt dt 

6 

bk = 4 
s 
0 

let us introduce the notation 
b 

f = 5 f (t) dt, 

a 
T, (4 z; &I = fj, sin p&t sin pt,xy,-l 

D, (t, x) = 2 5 sin nkt sin nkx, 
k=1 

S, (t, x; N = T, (t, x; B) --DN (t, x) 

with the choice of N to be discussed later. Then 
1 (3. I) 

~f(t)sn(t,x;BP = c$ a& sin pkx - jl bk sin nkx 
0 

k=l 
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Study of the behavior of the integral appearing in the left-hand side of the formula (3.1) 

enables us to relate the problem of convergence of the series (1.9) to the known results 
concerning the convergence of the Fourier sine series forf (3. Let us use the relation 

Where the contour L is a rectangle with vertices (*W C~Z f Bi), pn < C, ( 
pn+l, G # nks N is the integral part of 3@Cn, and the function 

A (w) is given by (1.6). Since the integral along the imaginary axis, regarded as the pr- 

incipal value, is equal to zero, we find that for z + t ( 2 we have 

The inequalities 

I%Jtrz;Bfl\( (2_zQ-_t)C , 
7z 

ISS,(t,s;B)dtl~,(2_,Q_l~~*~ 

0 

which follow directly from (3.2) and (3.3) (Q is constant) yield the following analog 

of the Riemann-Lebesgue theorem: if for 1% bl c IO, 11 an integral I exists 

and converges absolutely, then for 0 < r ( 4. (if b < 1, then for 0 < 2 

< 1) we have the estimate 
b 

s f(t)Sn(t,x;j3)dt = 0 (n--+00) 
a 

Therefore ~ N 

c 
aksinpfl- (OBz<l) 

k=1 R=l 

This, together with (l, 7) and the Riemann-Lebesgue theorem, implies that the series 

(1.9) and the Fourier sine series both diverge. Consequently, the convergence (uniform 
convergence) of the Fourier sine series to the function f @I represents a sufficient con- 

dition for the convergence of the series (1.9) to f ($1 for 0 f x < 1 (uniform con- 

vergence for 0 < z < 1 - 6, 6 > 0) . In particular if f (4 E 4 a (0 C 
a\< 11, then b, == cJ WY II41 

~~I~sina&s- f(x) = O(n”fn n) 

and the deviation of the partial sums of the series (1.9) from the function j (x) is of 

the same order. 
Let us now consider the problem of convergence of (1.9) near the point 2 = 1. Analo- 

gously with (3.2) and (3.3) we obtain 
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1 

5 f(t) T,, (4 2; fi) dt = i ak sin pp 
0 k=l 

C,,+ Bi 

T,(t,x; #3) = Em.& 1 K(w,x,t)dw 

C,--BBi 

sp (w, 4 = y&j- t#lw sin (x --I)W+cos(x--l)w] 

using the estimate (0 < t < 1, 0 \< 2 < 1) 

]~r,W;B)dt~=O~~~ 
0 

1 \T,(1,1:B)dt( = O(+-) (n-,m) 
0 

we can show that if the integral 1, exists and converges absolutely, the functionf (x) 
is continuous and has a bounded variation on (h, f) @<xl) and f(l) ‘;= 0 
then the series (1.9) converges uniformly near x * 1. 

Let us now set in (1. II> M + 0 and f (2) = 0. Then the series (1.9) con- 
verges to zero when 0 \< x f 1 andto &!I when x=1. This can be ea- 
sily confirmed by considering the complex integrals 

(B+l)sinw+fiweosw 
A (w) (I+ 6 + flaws) dw’ 

1 

where the contour -& is the circumference of radius C, rqith the center at the co- 
ordinate origin and fis is a rectangle with the vertices (&n (n + l/s), &In n). 

4. Solution of problems shown schematically in Fig. 1 was obtained using the di- 
gital computer M-222. Below we give some of the results. Fig. 2 refers to the problem 
(1. I)-( 1.4) with R =i,f(z)rO,M==2n and various values of fi: the graphs de- 
pict the d~~ibutions of the contact stresses %Z (Iv r, and forces @r, (1, r) 
in the plate. Figs. 3 and 4 refer to the problem (2.1)~(2.3) with RX = 1, & = 2, 

Jl =o,~,=z,~.~I~~~o,M,~=oIs=~.~~,~~=M~~=~~S~=B~=B andva- 

rious B. The graphs of the functions #j = Ri7rQ tz* Ri) in the left half of Fig. 3 
correspond to the outer contact surface (i = 83 Fig. 4 depicts the graphs of the mo- 
ments of tangential forces Mj == ZnRj’$jT,, (2, Rd in the shells. The family of cu- 
rves passing through the coordinate origin corresponds to the inner shell, and the other 
family to the outer shell. Dashed lines depict limiting solutions of the problem in ques- 
tion for a plane stamp and perfectly rigid cylindrical yokes. 
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